Impact of Elastic Diaphragm Hardness and Structural Parameters on the Hydraulic Performance of Automatic Flushing Valve

Author:

Gao Hao,Mo Yan,Wu Feng,Wang Jiandong,Gong Shihong

Abstract

Automatic flushing valve (AFV) can improve the anti-clogging ability of the drip fertigation system. The minimum inlet pressure (Hamin) required for automatic closing and the maximum flushing duration (FDmax) are two important performance indexes of AFV. The existing AFV products have the problem of larger Hamin and smaller FDmax, which result higher investment and operating cost, and poor flushing efficiency. Based on the mechanical analysis of the AFV elastic diaphragm and the derivation of the FD, elastic diaphragm hardness (E), ascending channel offset distance (D), and drain hole width (W) were selected as the experimental factors, and nine AFVs were designed by L9(33) orthogonal test method to investigate the influence of elastic diaphragm hardness and structural parameters on the hydraulic performance of AFVs. The hydraulic performance test results showed that the Hamin of the nine AFVs ranged from 0.026 to 0.082 MPa and FDmax ranged from 36.3 to 95.7 s. Hamin was positively correlated with E and D and negatively correlated with W. FDmax was negatively correlated with E and W and tended to increase and then decrease with D. All elastic diaphragm hardness and structural parameters had a significant effect on Hamin, and E and W had a significant effect on FDmax. Based on the range analysis, two new combinations of AFV elastic diaphragm hardness and structural parameters with minimum Hamin (E = 40 HA, D = 0 mm, W = 2 mm) and maximum FDmax (E = 40 HA, D = 2 mm, W = 1.68 mm) were determined, and the corresponding Hamin was 0.022 MPa, 63.3% lower than that of the existing product, and FDmax was 116.4 s, 71.2% higher than that of the existing product. In this study, two ternary nonlinear mathematical regression models of Hamin and FDmax with elastic diaphragm hardness and structural parameters was constructed. The simulation accuracy of the models is good and can be used to quickly predict the optimal combination of AFV parameters to satisfy the actual engineering-required Hamin and FDmax.

Funder

Research and Development Support Program of China Institute of Water Resources and Hydropower Research

Inner Mongolia Autonomous Region Key Research and Transformation of Achievements Program

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3