Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion

Author:

Dias Bruna,Lopes Marlene,Ramôa Renata,Pereira Ana S.,Belo Isabel

Abstract

Olive mill wastewater (OMW), which is generated during olive oil production, has detrimental effects on the environment due to its high organic load and phenolic compounds content. OMW is difficult to biodegrade, but represents a valuable resource of nutrients for microbial growth. In this study, yeast strains were screened for their growth on phenolic compounds usually found in OMW and responsible for antimicrobial effects. Candida tropicalis ATCC 750 demonstrated an extraordinary capacity to grow in phenolics and was chosen for further experiments with OMW-based medium. The effects of nitrogen supplementation, the pH, and the stirring rate on cellular growth, OMW-components consumption, and added-value compounds production were studied in batch cultures in Erlenmeyer flasks and in a bioreactor. Candida tropicalis was able to reduce 68% of the organic load (chemical oxygen demand) and 39% of the total phenols of OMW in optimized conditions in bioreactor experiments, producing lipase (203 U·L−1) and protease (1105 U·L−1). Moreover, intracellular lipids were accumulated, most significantly under nitrogen-limited conditions, which is common in this type of wastewater. The high potential of C. tropicalis to detoxify OMW and produce added-value compounds from it makes this process an alternative approach to other conventional processes of OMW treatment.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference59 articles.

1. Olive mill wastewater: Treatment and valorization technologies;Rharrabti,2018

2. Changes in Olive Oil and Table Olive Production,2019

3. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods

4. Olive oil production sector: Environmental effects and sustainability challenges;Souilem,2017

5. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3