An Unsupervised Learning Approach to Condition Assessment on a Wound-Rotor Induction Generator

Author:

Swana Elsie,Doorsamy WesleyORCID

Abstract

Accurate online diagnosis of incipient faults and condition assessment on generators is especially challenging to automate through supervised learning techniques, because of data imbalance. Fault-condition training and test data are either not available or are experimentally emulated, and therefore do not precisely account for all the eventualities and nuances of practical operating conditions. Thus, it would be more convenient to harness the ability of unsupervised learning in these applications. An investigation into the use of unsupervised learning as a means of recognizing incipient fault patterns and assessing the condition of a wound-rotor induction generator is presented. High-dimension clustering is performed using stator and rotor current and voltage signatures measured under healthy and varying fault conditions on an experimental wound-rotor induction generator. An analysis and validation of the clustering results are carried out to determine the performance and suitability of the technique. Results indicate that the presented technique can accurately distinguish the different incipient faults investigated in an unsupervised manner. This research will contribute to the ongoing development of unsupervised learning frameworks in data-driven diagnostic systems for WRIGs and similar electrical machines.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3