Investigation into the Impact of the Composition of Ethanol Fuel Deposit Control Additives on Their Effectiveness

Author:

Stępień Zbigniew,Żak Grażyna,Markowski JarosławORCID,Wojtasik Michał

Abstract

An increasing percentage of ethanol in fuel leads to significant changes in polarity and solubility, which makes conventional gasoline deposit control additives (DCAs) difficult to dissolve in ethanol fuels, resulting in the formation of deposits on engine elements. Critical areas of deposit formation in an engine are constituted by inlet valves, combustion chambers, and fuel injectors. As a consequence, operational parameters of the engine are disturbed to a large extent by the total effect of the deposits. To prevent the aforementioned phenomena, in the operation of engines fueled with ethanol-containing blends, it is necessary to use specifically prepared DCAs. The paper briefly presents a process of development of DCAs dedicated to high-ethanol fuels. Each of the prepared DCA formulations contained a substance having detergent-emulsifying properties (referred to in the text as DEM), a carrier oil, and a solvent. The composition and ratios of components used in the DCA, by testing their effectiveness in engine deposit formation, are verified. A motor station and a test procedure developed for this purpose were used. In search of alternative solutions to conventional polyisobutyleneamines (PIBA) and polyetheramines (PEA) surfactants, which have good solubility in hydrocarbons but not in ethanol, a substance with a benzoxazine structure and a Mannich base were synthesized. Their chemical structures were confirmed by nuclear magnetic resonance (NMR) DCAs were developed, and the effectiveness of their action was verified. Moreover, attention was paid to the dosage level of the DEM and the carrier oil in the DCA. Finally, it was confirmed in the studies carried out that DCAs used for improvement of conventional hydrocarbon engine gasolines are not efficient enough when used in E85 fuels. In the case of the latter, DCAs that have been specifically developed for such fuels should be used, because they have a different chemical structure, and are soluble in the ethanol-gasoline mixture in any ratio of both components.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. The prospects for the use of ethanol as a fuel component and its potential in the reduction of exhaust emissions;Pałuchowska;Combust. Engines,2014

2. Multidirectional investigations of high-ethanol fuels on deposit formation in spark ignition engines;Stępień;Combust. Engines,2015

3. Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive

4. Fuel/Engine Interactions;Kalghatgi,2013

5. Carbon Deposit Formation From Thermal Stressing of Petroleum Fuels;Orhan;Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3