A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy

Author:

Lee Ji-WonORCID,Kim Mun-Kyeom,Kim Hyung-JoonORCID

Abstract

Owing to the increases of energy loads and penetration of renewable energy with variability, it is essential to determine the optimum capacity of the battery energy storage system (BESS) and demand response (DR) within the microgrid (MG). To accomplish the foregoing, this paper proposes an optimal MG operation approach with a hybrid method considering the game theory for a multi-agent system. The hybrid method operation includes both BESS and DR methods. The former is presented to reduce the sum of the MG operation and BESS costs using the game theory, resulting in the optimal capacity of BESS. Similarly, the DR method determines the optimal DR capacity based on the trade-off between the incentive value and capacity. To improve optimization operation, multi-agent guiding particle swarm optimization (MAG-PSO) is implemented by adjusting the best global position and position vector. The results demonstrate that the proposed approach not only affords the most economical decision among agents but also reduces the utilization cost by approximately 8.5%, compared with the base method. Furthermore, it has been revealed that the proposed MAG-PSO algorithm has superiority in terms of solution quality and computational time with respect to other algorithms. Therefore, the optimal hybrid method operation obtains a superior solution with the game theory strategy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3