Abstract
Carbon nanotubes play a significant role in improving the thermal efficiency of common liquids. The objective of this research is to examine the thin film spray over the surface of a vertical tube through carbon nanotubes (CNTs) nanofluids. Processes for the preparation of the nanofluid and the stable dispersion of the CNTs in water were followed from the available experimental literature. The thickness of the spray pattern was kept variable to control the stability of the spray pattern and to accomplish the suitable heat transmission under the effects of a magnetic field. The pressure supply and rate of the spray were also calculated as a function of the liquid film thickness. The basic governing equations were transformed into nonlinear differential equations by using suitable similarity transformations. The numerical outcomes were obtained by means of the BVPh 2.0 package of the optimal scheme. The influences of the physical quantities like spray rate and variable thickness on the dimensionless velocity, temperature, pressure distribution, Nusselt number were investigated and the results are compared with the existing literature. The comparison was found to be in good agreement. The present results showed that the single-walled carbon nanotubes are more efficient in the enhancement of heat transfer rate compared to the multi-walled carbon nanotubes.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献