Influence of Freezing Parameters on the Formation of Internal Porous Structure and Its Impact on Freeze-Drying Kinetics

Author:

Levin Patrick,Meunier Vincent,Kessler Ulrich,Heinrich StefanORCID

Abstract

The main objective of this study was firstly to investigate the influence of freezing process parameters on the formation of the internal structure of frozen coffee granules. It was investigated how these frozen internal structures affect the drying kinetics during freeze-drying. A design of experiment study was carried out using the response surface method to quantify the influence of the freezing step that occurs in a scraped surface heat exchanger (SSHE). Therefore, the coffee extract at a concentration of 30% w/w is entering the SSHE as a liquid and gets partially crystallized up to a weight-based ice content of 0.364. During this step, the influence of factors like cooling temperature, scraper rotation speed and temperature cycles on ice crystal structure was investigated. In a second freezing step, the influence of freezing rates during hardening of the product by air-blast freezing is investigated, where the freezing rate is significantly affected by the cake thickness. The produced frozen granules were freeze-dried in single layer experiments. During drying the influence of internal structure on the drying kinetics was investigated. Results show that all factors have a significant impact on structure parameters for 30% w/w coffee solutions. A lower degree of supercooling during freezing in an SSHE, a higher number of temperature cycles (2 to 8 times) and lower freezing rates during hardening (2 °C/min to 10 °C/min) were leading to increased crystal size. This increase accelerates the primary drying rate and decreases the total drying time. A higher number of temperature cycles leads to a significant increase of crystal size and therefore larger pore size at the end of the primary drying. Furthermore, in combination with temperature cycles in the SSHE, it was found that high freezing rates during air blast freezing generally lead to a second nucleation step of ice crystals.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3