A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning

Author:

Wu Haibin1ORCID,Dai Shiyu12,Liu Chengyang1,Wang Aili1ORCID,Iwahori Yuji3ORCID

Affiliation:

1. Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China

2. Artificial Intelligence R&D Center, Nuctech Jiang Su Company Limited, Changzhou 213000, China

3. Department of Computer Science, Chubu University, Aichi 487-8501, Japan

Abstract

Deep-learning-based multi-sensor hyperspectral image classification algorithms can automatically acquire the advanced features of multiple sensor images, enabling the classification model to better characterize the data and improve the classification accuracy. However, the currently available classification methods for feature representation in multi-sensor remote sensing data in their respective domains do not focus on the existence of bottlenecks in heterogeneous feature fusion due to different sensors. This problem directly limits the final collaborative classification performance. In this paper, to address the bottleneck problem of joint classification due to the difference in heterogeneous features, we innovatively combine self-supervised comparative learning while designing a robust and discriminative feature extraction network for multi-sensor data, using spectral–spatial information from hyperspectral images (HSIs) and elevation information from LiDAR. The advantages of multi-sensor data are realized. The dual encoders of the hyperspectral encoder by the ConvNeXt network (ConvNeXt-HSI) and the LiDAR encoder by Octave Convolution (OctaveConv-LiDAR) are also used. The adequate feature representation of spectral–spatial features and depth information obtained from different sensors is performed for the joint classification of hyperspectral images and LiDAR data. The multi-sensor joint classification performance of both HSI and LiDAR sensors is greatly improved. Finally, on the Houston2013 dataset and the Trento dataset, we demonstrate through a series of experiments that the dual-encoder model for hyperspectral and LiDAR joint classification via contrastive learning achieves state-of-the-art classification performance.

Funder

high end foreign experts introduction program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3