UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning

Author:

Bajić Milan1ORCID,Potočnik Božidar2ORCID

Affiliation:

1. Department of IT and Computer Sciences, Zagreb University of Applied Sciences, 10000 Zagreb, Croatia

2. Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

Abstract

A few promising solutions for thermal imaging Unexploded Ordnance (UXO) detection were proposed after the start of the military conflict in Ukraine in 2014. At the same time, most of the landmine clearance protocols and practices are based on old, 20th-century technologies. More than 60 countries worldwide are still affected by explosive remnants of war, and new areas are contaminated almost every day. To date, no automated solutions exist for surface UXO detection by using thermal imaging. One of the reasons is also that there are no publicly available data. This research bridges both gaps by introducing an automated UXO detection method, and by publishing thermal imaging data. During a project in Bosnia and Herzegovina in 2019, an organisation, Norwegian People’s Aid, collected data about unexploded ordnances and made them available for this research. Thermal images with a size of 720 × 480 pixels were collected by using an Unmanned Aerial Vehicle at a height of 3 m, thus achieving a very small Ground Sampling Distance (GSD). One of the goals of our research was also to verify if the explosive war remnants’ detection accuracy could be improved further by using Convolutional Neural Networks (CNN). We have experimented with various existing modern CNN architectures for object identification, whereat the YOLOv5 model was selected as the most promising for retraining. An eleven-class object detection problem was solved primarily in this study. Our data were annotated semi-manually. Five versions of the YOLOv5 model, fine-tuned with a grid-search, were trained end-to-end on randomly selected 640 training and 80 validation images from our dataset. The trained models were verified on the remaining 88 images from our dataset. Objects from each of the eleven classes were identified with more than 90% probability, whereat the Mean Average Precision (mAP) at a 0.5 threshold was 99.5%, and the mAP at thresholds from 0.5 to 0.95 was 87.0% up to 90.5%, depending on the model’s complexity. Our results are comparable to the state-of-the-art, whereat these object detection methods have been tested on other similar small datasets with thermal images. Our study is one of the few in the field of Automated UXO detection by using thermal images, and the first that solves the problem of identifying more than one class of objects. On the other hand, publicly available thermal images with a relatively small GSD will enable and stimulate the development of new detection algorithms, where our method and results can serve as a baseline. Only really accurate automatic UXO detection solutions will help to solve one of the least explored worldwide life-threatening problems.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Manickavasagan, A., and Jayasuriya, H. (2014). Imaging with Electromagnetic Spectrum, Springer.

2. Messina, G., and Modica, G. (2020). Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens., 12.

3. Thermal Imaging and its Military Applications;Harrison;RUSI J.,1977

4. Kuenzer, C., and Dech, S. (2013). Remote Sensing and Digital Image Processing, Springer.

5. Roberts, S., and Williams, J. (1995). After the Guns Fall Silent: The Enduring Legacy of Landmines, Oxfam.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3