Weakly Supervised Semantic Segmentation in Aerial Imagery via Cross-Image Semantic Mining

Author:

Zhou Ruixue123ORCID,Yuan Zhiqiang123ORCID,Rong Xuee123,Ma Weicong4,Sun Xian13,Fu Kun13,Zhang Wenkai13

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

3. Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

4. Xi’an Institute of Applied Optics, Xi’an 710065, China

Abstract

Weakly Supervised Semantic Segmentation (WSSS) with only image-level labels reduces the annotation burden and has been rapidly developed in recent years. However, current mainstream methods only employ a single image’s information to localize the target and do not account for the relationships across images. When faced with Remote Sensing (RS) images, limited to complex backgrounds and multiple categories, it is challenging to locate and differentiate between the categories of targets. As opposed to previous methods that mostly focused on single-image information, we propose CISM, a novel cross-image semantic mining WSSS framework. CISM explores cross-image semantics in multi-category RS scenes for the first time with two novel loss functions: the Common Semantic Mining (CSM) loss and the Non-common Semantic Contrastive (NSC) loss. In particular, prototype vectors and the Prototype Interactive Enhancement (PIE) module were employed to capture semantic similarity and differences across images. To overcome category confusions and closely related background interferences, we integrated the Single-Label Secondary Classification (SLSC) task and the corresponding single-label loss into our framework. Furthermore, a Multi-Category Sample Generation (MCSG) strategy was devised to balance the distribution of samples among various categories and drastically increase the diversity of images. The above designs facilitated the generation of more accurate and higher-granularity Class Activation Maps (CAMs) for each category of targets. Our approach is superior to the RS dataset based on extensive experiments and is the first WSSS framework to explore cross-image semantics in multi-category RS scenes and obtain cutting-edge state-of-the-art results on the iSAID dataset by only using image-level labels. Experiments on the PASCAL VOC2012 dataset also demonstrated the effectiveness and competitiveness of the algorithm, which pushes the mean Intersection-Over-Union (mIoU) to 67.3% and 68.5% on the validation and test sets of PASCAL VOC2012, respectively.

Funder

National Science Fund for Distinguished Young Scholars

Surface of the State Natural Science Fund projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-Shot Rotation-Invariant Aerial Image Semantic Segmentation;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Efficient and Controllable Remote Sensing Fake Sample Generation Based on Diffusion Model;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3