Synergism of Multi-Modal Data for Mapping Tree Species Distribution—A Case Study from a Mountainous Forest in Southwest China

Author:

Zheng Pengfei1,Fang Panfei1,Wang Leiguang23ORCID,Ou Guanglong1ORCID,Xu Weiheng23ORCID,Dai Fei2,Dai Qinling4

Affiliation:

1. Faculty of Forestry, Southwest Forestry University, Kunming 650024, China

2. Institute of Big Data and Artificial Intelligence, Southwest Forestry University, Kunming 650024, China

3. Key Laboratory of National Forestry and Grassland Administration on Forestry and Ecological Big Data, Southwest Forestry University, Kunming 650024, China

4. Art and Design College, Southwest Forestry University, Kunming 650024, China

Abstract

Accurately mapping tree species is crucial for forest management and conservation. Most previous studies relied on features derived from optical imagery, and digital elevation data and the potential of synthetic aperture radar (SAR) imagery and other environmental factors have, generally, been underexplored. Therefore, the aim of this study is to evaluate the potential of fusing freely available multi-modal data for accurately mapping tree species. Sentinel-2, Sentinel-1, and various environmental datasets over a large mountainous forest in Southwest China were obtained and analyzed using Google Earth Engine (GEE). Seven data cases considering the individual or joint performance of different features, and four additional cases considering a novel clustering-based feature selection method, were analyzed. All 11 cases were assessed using three machine learning algorithms, including random forest (RF), support vector machine (SVM), and extreme gradient boosting tree (XGBoost). The best performance, with an overall accuracy of 77.98%, was attained from the case with all features and the random forest classifier. Sentinel-2 data alone exhibited similar performance as environmental data in terms of overall accuracy. Similar species, such as oak and birch, cannot be spectrally discriminated based on Sentinel-2-based features alone. The addition of SAR features improved discrimination, especially when distinguishing between some coniferous and deciduous species, but also decreased accuracy for oak. The analysis based on different data cases and feature importance rankings indicated that environmental features are important. The random forest outperformed other models, and a better prediction was achieved for planted tree species compared to that for the natural forest. These results suggest that accurately mapping tree species over large mountainous areas is feasible with freely accessible multi-modal data, especially when considering environmental factors.

Funder

the National Natural Science Foundation of China

Key Development and Promotion Project of Yunnan Province

Research Foundation for Basic Research of Yunnan Province

Joint Special Project for Agriculture of Yunnan Province, China

“Ten Thousand Talents Program” Special Project for Young Top-notch Talents of Yunnan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3