Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries

Author:

Acharyya Rituparna1ORCID,Mukhopadhyay Anirban2,Habel Michał3ORCID

Affiliation:

1. Department of Geography, School of Earth Science, Central University of Karnataka, Kalaburagi 585367, Karnataka, India

2. Disaster Preparedness, Mitigation and Management (DPMM), Asian Institute of Technology, Chang Wat Pathum, Pathum Thani 12120, Thailand

3. Faculty of Geographical Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland

Abstract

River deltaic estuaries are dynamic ecosystems characterised by linkages between tidal currents, river water discharge, and sediment from the basin. The present study is based on the application of remote data: multispectral satellite images, DEM, LULC (Land use and land cover), lithology, and hydroclimatic factors. The standardised methodology was based on the adoption of a coupled modelling approach for this work, involving the semi-distributed catchment scale hydrological Soil and Water Assessment Tool (SWAT) model and the statistical Digital Shoreline Analysis System (DSAS) for (1) identifying environmental drivers of sediment transport changes of the estuarine reach; (2) analysis of retrospective changes in shoreline configuration; (3) assessing discharge and sediment dynamics of the estuarine section, and (4) generating future projection scenarios for the estuary’s state to take action for its long-term ecological stability. Our study employs a coupled modelling framework to fill the research gap for Subarnarekha deltaic estuary. Integrating outputs derived from DSAS and SWAT, a comprehensive understanding of the changes in watershed hydrology, water diversions, and damming of rivers have altered the magnitude and temporal patterns of freshwater flow and sediment, which potentially contributed to the receding of the Digha Coast shoreline.

Funder

Kazimierz Wielki University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3