Numerical Simulation Using Finite-Difference Schemes with Continuous Symmetries for Processes of Gas Flow in Porous Media

Author:

Markov ,Rodionov

Abstract

This article presents the applications of continuous symmetry groups to the computational fluid dynamics simulation of gas flow in porous media. The family of equations for one-phase flow in porous media, such as equations of gas flow with the Klinkenberg effect, is considered. This consideration has been made in terms of difference scheme constructions with the preservation of continuous symmetries, which are presented in original parabolic differential equations. A new method of numerical solution generation using continuous symmetry groups has been developed for the equation of gas flow in porous media. Four classes of invariant difference schemes have been found by using known group classifications of parabolic differential equations with partial derivatives. Invariance of necessary conditions for stability has been shown for the difference schemes from the presented classes. Comparison with the classical approach for seeking numerical solutions for a particular case from the presented classes has shown that the calculation speed is greater by several orders than for the classical approach. Analysis of the accuracy for the presented method of numerical solution generation on the basis of continuous symmetries shows that the accuracy of generated numerical solutions depends on the accuracy of initial solutions for generations.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference30 articles.

1. Advanced Petroleum Reservoir Simulation: Towards Developing Reservoir Emulators;Islam,2016

2. Ten golden rules for simulation engineers;Aziz;JPT,1989

3. Applications of Lie Groups to Difference Equations;Dorodnitsyn,2011

4. Vorlesungen Uber Differentialgleichungen Mit Bekannten Infinitesimalen Transformationen;Lie,1891

5. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles;Ibragimov,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3