Analytical and Numerical Solutions for the Thermal Problem in a Friction Clutch System

Author:

Sabri Laith A.ORCID,Topczewska KatarzynaORCID,Jweeg Muhsin Jaber,Abdullah Oday I.ORCID,Abed Azher M.

Abstract

The dry friction clutch is an important part in vehicles, which has more than one function, but the most important function is to connect and disconnect the engine (driving part) with driven parts. This work presents a developed numerical solution applying a finite element technique in order to obtain results with high precision. A new three-dimensional model of a single-disc clutch operating in dry conditions was built from scratch. As the new model represents the real friction clutch including all details, the complexity in the geometry of the clutch is considered one of the difficulties that the researchers faced using the numerical solution. The thermal behaviour of the friction clutch during the slip phase was studied. Meanwhile, in the second part of this work, the transient thermal equations were derived from scratch to find the analytical solution for the thermal problem of a clutch disc in order to verify the numerical results. It was found, after comparison of the numerical results with analytical results, that the results of the numerical model are very accurate and the difference between them does not exceed 1%.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference31 articles.

1. Effect of band contact on the temperature distribution for dry friction clutch;Abdullah;Tribol. Ind.,2013

2. Transient Behavior of Initial Perturbation in Multidisk Clutch System

3. Solution of heat conduction problem in automotive clutch and brake systems;Al-Shabibi;Heat Transf. Summer Conf.,2008

4. Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence

5. Simulation of engagement control in automotive dry-clutch and temperature field analysis through finite element model

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3