Fuzzy C-Means Based Clustering and Rule Formation Approach for Classification of Bearing Faults Using Discrete Wavelet Transform

Author:

Anbu ,Thangavelu ,Ashok

Abstract

The rolling bearings are considered as the heart of rotating machinery and early fault diagnosis is one of the biggest challenges during operation. Due to complicated mechanical assemblies, detection of the advancing fault and faults at the incipient stage is very difficult and tedious. This work presents a fuzzy rule based classification of bearing faults using Fuzzy C-means clustering method using vibration measurements. Experiments were conducted to collect the vibration signals of a normal bearing and bearings with faults in the inner race, outer race and ball fault. Discrete Wavelet Transform (DWT) technique is used to decompose the vibration signals into different frequency bands. In order to detect the early faults in the bearings, various statistical features were extracted from this decomposed signal of each frequency band. Based on the extracted features, Fuzzy C-means clustering method (FCM) is developed to classify the faults using suitable membership functions and fuzzy rule base is developed for each class of the bearing fault using labeled data. The experimental results show that the proposed method is able to classify the condition of the bearing using the extracted features. The proposed FCM based clustering and classification model provides easier interpretation and implementation for monitoring the condition of the rolling bearings at an early stage and it will be helpful to take the preventive action before a large-scale failure.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3