Algorithm for Determining Three Components of the Velocity Vector of Highly Maneuverable Aircraft

Author:

Pavlikov Volodymyr1,Tserne Eduard1ORCID,Odokiienko Oleksii1,Sydorenko Nataliia1,Peretiatko Maksym1,Kosolapova Olha1,Prokofiiev Ihor1,Humennyi Andrii2,Belousov Konstantin3

Affiliation:

1. Aerospace Radio-Electronic Systems Department, National Aerospace University “Kharkiv Aviation Institute”, 61070 Kharkiv, Ukraine

2. National Aerospace University “Kharkiv Aviation Institute”, 61070 Kharkiv, Ukraine

3. Spacecraft, Measuring Systems and Telecommunications Department, Yuzhnoye SDO, 49000 Dnipro, Ukraine

Abstract

We developed a signal processing algorithm to determine three components of the velocity vector of a highly maneuverable aircraft. We developed an equation of the distance from an aircraft to an underlying surface. This equation describes a general case of random spatial aircraft positions. Particularly, this equation considers distance changes according to an aircraft flight velocity variation. We also determined the relationship between radial velocity measured within the radiation pattern beam, the signal frequency Doppler shift, and the law of the range changing within the irradiated surface area. The models of the emitted and received signals were substantiated. The proposed equation of the received signal assumes that a reflection occurs not from a point object, but from a spatial area of an underlying surface. It fully corresponds to the real interaction process between an electromagnetic field and surface. The considered solution allowed us to synthesize the optimal algorithm to estimate the current range and three components {Vx,Vy,Vz} of the aircraft’s velocity vector V→. In accordance with the synthesized algorithm, we propose a radar structural diagram. The developed radar structural diagram consists of three channels for transmitting and receiving signals. This number of channels is necessary to estimate the full set of the velocity and altitude vector components. We studied several aircraft flight trajectories via simulations. We analyzed straight-line uniform flights; flights with changes in yaw, roll, and attack angles; vertical rises; and landings on a glide path and lining up with the correct yaw, pitch, and roll angles. The simulation results confirmed the correctness of the obtained solution.

Funder

Ministry of Education and Science of Ukraine

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3