Affiliation:
1. Indian Statistical Institute, Bangalore 560059, India
Abstract
Range value at risk (RVaR) is a quantile-based risk measure with two parameters. As special examples, the value at risk (VaR) and the expected shortfall (ES), two well-known but competing regulatory risk measures, are both members of the RVaR family. The estimation of RVaR is a critical issue in the financial sector. Several nonparametric RVaR estimators are described here. We examine these estimators’ accuracy in various scenarios using Monte Carlo simulations. Our simulations shed light on how changing p and q with respect to n affects the effectiveness of RVaR estimators that are nonparametric, with n representing the total number of samples. Finally, we perform a backtesting exercise of RVaR based on Acerbi and Szekely’s test.
Funder
Department of Science and Technology
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献