Accelerating Multiple Sequence Alignments Using Parallel Computing

Author:

Bani Baker Qanita1ORCID,Al-Hussien Ruba A.1ORCID,Al-Ayyoub Mahmoud2ORCID

Affiliation:

1. Department of Computer Science, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

2. Department of Information Technology, College of Engineering and IT, Ajman University, Ajman P.O. Box 346, United Arab Emirates

Abstract

Multiple sequence alignment (MSA) stands as a critical tool for understanding the evolutionary and functional relationships among biological sequences. Obtaining an exact solution for MSA, termed exact-MSA, is a significant challenge due to the combinatorial nature of the problem. Using the dynamic programming technique to solve MSA is recognized as a highly computationally complex algorithm. To cope with the computational demands of MSA, parallel computing offers the potential for significant speedup in MSA. In this study, we investigated the utilization of parallelization to solve the exact-MSA using three proposed novel approaches. In these approaches, we used multi-threading techniques to improve the performance of the dynamic programming algorithms in solving the exact-MSA. We developed and employed three parallel approaches, named diagonal traversing, blocking, and slicing, to improve MSA performance. The proposed method accelerated the exact-MSA algorithm by around 4×. The suggested approaches could be basic approaches to be combined with many existing techniques. These proposed approaches could serve as foundational elements, offering potential integration with existing techniques for comprehensive MSA enhancement.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Algorithm for Local Alignment of DNA and Protein Sequences;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3