Data Augmentation for Regression Machine Learning Problems in High Dimensions

Author:

Guilhaumon Clara12ORCID,Hascoët Nicolas1,Chinesta Francisco134,Lavarde Marc2,Daim Fatima3ORCID

Affiliation:

1. PIMM, Arts et Métiers Institute of Technology, 151 Boulevard de l’Hopital, 75013 Paris, France

2. UPR EBINNOV, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95895 Cergy, France

3. ESI Group, Parc Icade, Immeuble le Seville, 3bis, Saarinen, CEDEX, 94528 Rungis, France

4. CNRS@CREATE Ltd., 1 Create Way, 08-01 CREATE Tower, Singapore 138602, Singapore

Abstract

Machine learning approaches are currently used to understand or model complex physical systems. In general, a substantial number of samples must be collected to create a model with reliable results. However, collecting numerous data is often relatively time-consuming or expensive. Moreover, the problems of industrial interest tend to be more and more complex, and depend on a high number of parameters. High-dimensional problems intrinsically involve the need for large amounts of data through the curse of dimensionality. That is why new approaches based on smart sampling techniques have been investigated to minimize the number of samples to be given to train the model, such as active learning methods. Here, we propose a technique based on a combination of the Fisher information matrix and sparse proper generalized decomposition that enables the definition of a new active learning informativeness criterion in high dimensions. We provide examples proving the performances of this technique on a theoretical 5D polynomial function and on an industrial crash simulation application. The results prove that the proposed strategy outperforms the usual ones.

Publisher

MDPI AG

Reference45 articles.

1. Mitchell, T. (1997). Machine Learning, McGraw-Hill.

2. The theory of everything;Laughlin;Proc. Natl. Acad. Sci. USA,2000

3. Goupy, J., and Creighton, L. (2006). Introduction to Design of Experiments, Dunod/L’Usine nouvelle.

4. Settles, B. (2009). Active Learning Literature Survey, University of Wisconsin-Madison. Computer Sciences Technical Report.

5. Principle of maximum Fisher information from Hardy’s axioms applied to statistical systems;Frieden;Comput. Sci. Tech. Rep. E,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3