Investigating the Thermo-Mechanical Behavior of a Ceramic Matrix Composite Wing Leading Edge by Sub-Modeling Based Numerical Analyses

Author:

Ferraiuolo MicheleORCID,Palumbo Concetta,Sellitto AndreaORCID,Riccio AnielloORCID

Abstract

The thermo-structural design of the wing leading edge of hypersonic vehicles is a very challenging task as high gradients in thermal field, and hence high thermal stresses, are expected. Indeed, when employing passive hot structures based thermal protection systems, very high temperatures (e.g., 1400 °C) are expected on the external surface of the wing leading edge, while the internal structural components are required to not exceed a few hundred degrees Celsius (e.g., 400 °C) at the interface with the internal cold structure. Hence, ceramic matrix composites (CMC) are usually adopted for the manufacturing of the external surface of the wing leading edge since they are characterized by good mechanical properties at very high temperatures (up to 1900 °C) together with an excellent thermal shock resistance. Furthermore, the orthotropic behavior of these materials together with the possibility to tailor their lamination sequence to minimize the heat transferred to internal components, make them very attractive for hot structure based thermal protection systems applications. However, the numerical predictions of the thermo-mechanical behavior of such materials, taking into account the influence of each ply (whose thickness generally ranges between 0.2 and 0.3 mm), can be very expensive from a computational point of view. To overcome this limitation, usually, sub-models are adopted, able to focus on specific and critical areas of the structure where very detailed thermo-mechanical analyses can be performed without significantly affecting the computational efficiency of the global model. In the present work, sub-modeling numerical approaches have been adopted for the analysis of the thermo-mechanical behavior of a ceramic matrix composite wing leading edge of a hypersonic vehicle. The main aim is to investigate the feasibility, in terms of computational efficiency and accuracy of results, in using sub-models for dimensioning complex ceramic matrix components. Hence, a comprehensive study on the size of sub-models and on the choice of their boundaries has been carried out in order to assess the advantages and the limitations in approximating the thermo-mechanical behavior of the investigated global ceramic matrix composite component.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3