Fractional-Step Method with Interpolation for Solving a System of First-Order 2D Hyperbolic Delay Differential Equations

Author:

Sampath Karthick1ORCID,Veerasamy Subburayan1ORCID,Agarwal Ravi P.2ORCID

Affiliation:

1. Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamilnadu, India

2. Department of Mathematics, Texas A & M University-Kingsville, 700 University Blvd., Kingsville, TX 78363-8202, USA

Abstract

In this article, we consider a delayed system of first-order hyperbolic differential equations. The presence of the delay term in first-order hyperbolic delay differential equations poses significant challenges in both analysis and numerical solutions. The delay term also makes it more difficult to use standard numerical methods for solving differential equations, as these methods often require that the differential equation be evaluated at the current time step. To overcome these challenges, specialized numerical methods and analytical techniques have been developed for solving first-order hyperbolic delay differential equations. We investigated and presented analytical results, such as the maximum principle and stability results. The propagation of discontinuities in the solution was also discussed, providing a framework for understanding its behavior. We presented a fractional-step method using a backward finite difference scheme and showed that the scheme is almost first-order convergent in space and time through the derivation of the error estimate. Additionally, we demonstrated an application of the proposed method to the problem of variable delay differential equations. We demonstrated the practical application of the proposed method to solving variable delay differential equations. The proposed algorithm is based on a numerical approximation method that utilizes a finite difference scheme to discretize the differential equation. We validated our theoretical results through numerical experiments.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3