Evaluation of the Leak Detection Performance of Distributed Kalman Filter Algorithms in WSN-Based Water Pipeline Monitoring of Plastic Pipes

Author:

Nkemeni ValeryORCID,Mieyeville FabienORCID,Tsafack Pierre

Abstract

Water is a basic necessity and one of the most valuable resources for human living. Sadly, large quantities of treated water get lost daily worldwide, especially in developing countries, through leaks in the water distribution network. Wireless sensor network-based water pipeline monitoring (WWPM) systems using low-cost micro-electro-mechanical systems (MEMS) accelerometers have become popular for real-time leak detection due to their low-cost and low power consumption, but they are plagued with high false alarm rates. Recently, the distributed Kalman filter (DKF) has been shown to improve the leak detection reliability of WWPM systems using low-cost MEMS accelerometers. However, the question of which DKF is optimal in terms of leak detection reliability and energy consumption is still unanswered. This study evaluates and compares the leak detection reliability of three DKF algorithms, selected from distributed data fusion strategies based on diffusion, gossip and consensus. In this study, we used a combined approach involving simulations and laboratory experiments. The performance metrics used for the comparison include sensitivity, specificity and accuracy. The laboratory results revealed that the event-triggered diffusion-based DKF is optimal, having a sensitivity value of 61%, a specificity value of 93%, and an accuracy of 90%. It also has a lower communication burden and is less affected by packet loss, making it more responsive to real-time leak detection.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference38 articles.

1. The Sustainable Development Goals Report 2020,2020

2. Access to Water and Sanitation in Sub-Saharan Africa;Eberhard,2019

3. The World Bank and the International Water Association to Establish a Partnership to Reduce Water Losseshttp://www.worldbank.org/en/news/press-release/2016/09/01/the-world-bank-and-the-international-water-association-to-establish-a-partnership-to-reduce-water-losses

4. Non-Revenue Water Loss: Its Causes and Cureshttps://www.waterworld.com/home/article/14070145/nonrevenue-water-loss-its-causes-and-cures

5. The effect of pressure on leakage in water distribution systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3