Abstract
Generating dynamic operators are constructed here from the cumulative case function to recover all state dynamics of a Susceptible–Exposed–Infectious–Recovered (SEIR) model for COVID-19 transmission. In this study, recorded and unrecorded EIRs and a time-dependent infection rate are taken into account to accommodate immeasurable control and intervention processes. Generating dynamic operators are built and implemented on the cumulative cases. All infection processes, which are hidden in this cumulative function, can be recovered entirely by implementing the generating operators. Direct implementation of the operators on the cumulative function gives all recorded state dynamics. Further, the unrecorded daily infection rate is estimated from the ratio between IFR and CFR. The remaining dynamics of unrecorded states are directly obtained from the generating operators. The simulations are conducted using infection data provided by Worldometers from ten selected countries. It is shown that the higher number of daily PCR tests contributed directly to reducing the effective reproduction ratio. The simulations of all state dynamics, infection rates, and effective reproduction ratios for several countries in the first and second waves of transmissions are presented. This method directly measures daily transmission indicators, which can be effectively used for the day-to-day control of the epidemic.
Funder
the Indonesian RistekBrin Competitive Grant
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献