Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors

Author:

Pantopoulou StellaORCID,Ankel Victoria,Weathered Matthew T.,Lisowski Darius D.ORCID,Cilliers Anthonie,Tsoukalas Lefteri H.,Heifetz AlexanderORCID

Abstract

Temperature sensing is one of the most common measurements of a nuclear reactor monitoring system. The coolant fluid flow in a reactor core depends on the reactor power state. We investigated the monitoring and estimation of the thermocouple time series using machine learning for a range of flow regimes. Measurement data were obtained, in two separate experiments, in a flow loop filled with water and with liquid metal Galinstan. We developed long short-term memory (LSTM) recurrent neural networks (RNNs) for sensor predictions by training on the sensor’s own prior history, and transfer learning LSTM (TL-LSTM) by training on a correlated sensor’s prior history. Sensor cross-correlations were identified by calculating the Pearson correlation coefficient of the time series. The accuracy of LSTM and TL-LSTM predictions of temperature was studied as a function of Reynolds number (Re). The root-mean-square error (RMSE) for the test segment of time series of each sensor was shown to linearly increase with Re for both water and Galinstan fluids. Using linear correlations, we estimated the range of values of Re for which RMSE is smaller than the thermocouple measurement uncertainty. For both water and Galinstan fluids, we showed that both LSTM and TL-LSTM provide reliable estimations of temperature for typical flow regimes in a nuclear reactor. The LSTM runtime was shown to be substantially smaller than the data acquisition rate, which allows for performing estimation and validation of sensor measurements in real time.

Funder

Advanced Research Projects Agency-Energy

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3