Abstract
To better understand graphene and its interactions with polycyclic aromatic hydrocarbons (PAHs), density-functional-theory (DFT) computations were used. Adsorption energy is likely to rise with the number of aromatic rings in the adsorbates. The DFT results revealed that the distance between the PAH molecules adsorbed onto the G ranged between 2.47 and 3.98 Å depending on the structure of PAH molecule. The Non-Covalent Interactions (NCI) plot supports the concept that van der Waals interactions were involved in PAH adsorption onto the Graphene (G) structure. Based on the DFT-calculated adsorption energy data, a rapid and reliable method employing an empirical model of a quantitative structure–activity relationship (QSAR) was created and validated for estimating the adsorption energies of PAH molecules onto graphene.
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献