A Graphics Process Unit-Based Multiple-Relaxation-Time Lattice Boltzmann Simulation of Non-Newtonian Fluid Flows in a Backward Facing Step

Author:

Molla Md. MamunORCID,Nag PreetomORCID,Thohura SharabanORCID,Khan AmirulORCID

Abstract

A modified power-law (MPL) viscosity model of non-Newtonian fluid flow has been used for the multiple-relaxation-time (MRT) lattice Boltzmann methods (LBM) and then validated with the benchmark problems using the graphics process unit (GPU) parallel computing via Compute Unified Device Architecture (CUDA) C platform. The MPL model for characterizing the non-Newtonian behavior is an empirical correlation that considers the Newtonian behavior of a non-Newtonian fluid at a very low and high shear rate. A new time unit parameter (λ) governing the flow has been identified, and this parameter is the consequence of the induced length scale introduced by the power law. The MPL model is free from any singularities due to the very low or even zero shear-rate. The proposed MPL model was first validated for the benchmark study of the lid-driven cavity and channel flows. The model was then applied for shear-thinning and shear-thickening fluid flows through a backward-facing step with relatively low Reynolds numbers, Re = 100–400. In the case of shear-thinning fluids (n=0.5), laminar to transitional flow arises while Re≥300, and the large vortex breaks into several small vortices. The numerical results are presented regarding the velocity distribution, streamlines, and the lengths of the reattachment points.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3