Abstract
MAX-CUT is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables xi by unitary vectors v→i. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product v→i·r→ with a random vector r→. Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of k-means and k-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAX-CUT. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee.
Funder
University of California Institute for Mexico and the United States
Subject
Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data Clustering and Visualization with Recursive Goemans-Williamson MaxCut Algorithm;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13