Local Potential Functional Embedding Theory: A Self-Consistent Flavor of Density Functional Theory for Lattices without Density Functionals

Author:

Sekaran SajanthanORCID,Saubanère MatthieuORCID,Fromager EmmanuelORCID

Abstract

Quantum embedding is a divide and conquer strategy that aims at solving the electronic Schrödinger equation of sizeable molecules or extended systems. We establish in the present work a clearer and in-principle-exact connection between density matrix embedding theory (DMET) and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified density-functional approximations, a self-consistent local potential functional embedding theory (LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with our formally exact density-functional embedding theory reveals that a single statically embedded impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a complementary density-functional correlation potential (which is neglected in both DMET and LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple impurities (which would enable to circumvent the modeling of DDs) and its generalization to quantum chemical Hamiltonians are left for future work.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3