Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET

Author:

Mudhombo InnocentORCID,Ranganai EdmoreORCID

Abstract

Although the variable selection and regularization procedures have been extensively considered in the literature for the quantile regression (QR) scenario via penalization, many such procedures fail to deal with data aberrations in the design space, namely, high leverage points (X-space outliers) and collinearity challenges simultaneously. Some high leverage points referred to as collinearity influential observations tend to adversely alter the eigenstructure of the design matrix by inducing or masking collinearity. Therefore, in the literature, it is recommended that the problems of collinearity and high leverage points should be dealt with simultaneously. In this article, we suggest adaptive LASSO and adaptive E-NET penalized QR (QR-ALASSO and QR-AE-NET) procedures where the weights are based on a QR estimator as remedies. We extend this methodology to their penalized weighted QR versions of WQR-LASSO, WQR-E-NET procedures we had suggested earlier. In the literature, adaptive weights are based on the RIDGE regression (RR) parameter estimator. Although the use of this estimator may be plausible at the ℓ1 estimator (QR at τ=0.5) for the symmetrical distribution, it may not be so at extreme quantile levels. Therefore, we use a QR-based estimator to derive adaptive weights. We carried out a comparative study of QR-LASSO, QR-E-NET, and the ones we suggest here, viz., QR-ALASSO, QR-AE-NET, weighted QRALASSO penalized and weighted QR adaptive AE-NET penalized (WQR-ALASSO and WQR-AE-NET) procedures. The simulation study results show that QR-ALASSO, QR-AE-NET, WQR-ALASSO and WQR-AE-NET generally outperform their nonadaptive counterparts. At predictor matrices with collinearity inducing points under normality, the QR-ALASSO and QR-AE-NET, respectively, outperform the non-adaptive procedures in the unweighted scenarios, as follows: in all 16 cases (100%) with respect to correctly selected (shrunk) zero coefficients; in 88% with respect to correctly fitted models; and in 81% with respect to prediction. In the weighted penalized WQR scenarios, WQR-ALASSO and WQR-AE-NET outperform their non-adaptive versions as follows: in 75% of the time with respect to both correctly fitted models and correctly shrunk zero coefficients and in 63% with respect to prediction. At predictor matrices with collinearity masking points under normality, the QR-ALASSO and QR-AE-NET, respectively, outperform the non-adaptive procedures in the unweighted scenarios as follows: in prediction, in 100% and 88% of the time; with respect to correctly fitted models in 100% and 50% (while in 50% equally); and with respect to correctly shrunk zero coefficients in 100% of the time. In the weighted scenario, WQR-ALASSO and WQR-AE-NET outperform their respective non-adaptive versions as follows; with respect to prediction, both in 63% of the time; with respect to correctly fitted models, in 88% of the time while with respect to correctly shrunk zero coefficients in 100% of the time. At predictor matrices with collinearity inducing points under the t-distribution, the QR-ALASSO and QR-AE-NET procedures outperform their respective non-adaptive procedures in the unweighted scenarios as follows: in prediction, in 100% and 75% of the time; with respect to correctly fitted models 88% of the time each; and with respect to correctly shrunk zero 88% and in 100% of the time. Additionally, the procedures WQR-ALASSO and WQR-AE-NET and their unweighted versions result in the former outperforming the latter in all respective cases with respect to prediction whilst there is no clear "winner" with respect to the other two measures. Overall, the WQR-ALASSO generally outperforms all other models with respect to all measures. At the predictor matrix with collinearity-masking points under the t-distribution, all adaptive versions outperformed their respective non-adaptive versions with respect to all metrics. In the unweighted scenarios, the QR-ALASSO and QR-AE-NET dominate their non-adaptive versions as follows: in prediction, in 63% and 75% of the time; with respect to correctly fitted models, in 100% and 38% (while in 62% equally); in 100% of the time with respect to correctly shrunk zero coefficients. In the weighted scenarios, all adaptive versions outperformed their non-adaptive versions as follows: 62% of the time in both respective cases with respect to prediction while it is vice-versa with respect to correctly fitted models and with respect to correctly shrunk zero coefficients. In the weighted scenarios, WQR-ALASSO and WQR-AE-NET dominate their respective non-adaptive versions as follows; with respect to correctly fitted models, in 62% of the time while with respect to correctly shrunk zero coefficients in 100% of the time in both cases. At the design matrix with both collinearity and high leverage points under the heavy-tailed distributions (t-distributions with d∈(1;6) degrees of freedom) scenarios, the dominance of the adaptive procedures over the non-adaptive ones is again evident. In the unweighted scenarios, the procedures QR-ALASSO and QR-AE-NET outperform their non-adaptive versions as follows; in prediction, in 75% and 62% of the time; with respect to correctly fitted models, they perform better in 100% and 88% of the time, while with respect to correctly shrunk zero coefficients, they outperform their non-adaptive ones 100% of the time in both cases. In the weighted scenarios, WQR-ALASSO and WQR-AE-NET dominate their non-adaptive versions as follows; with respect to prediction, in 100% of the time in both cases; and with respect to both correctly fitted models and correctly shrunk zero coefficients, they both do 88% of the time. Results from applications of the suggested procedures to real life data sets are more or less in line with the simulation studies results.

Funder

University of South Africa

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3