Control and Trajectory Planning of an Autonomous Bicycle Robot

Author:

Mavungu Masiala

Abstract

This paper addresses the modeling and the control of an autonomous bicycle robot where the reference point is the center of gravity. The controls are based on the wheel heading’s angular velocity and the steering’s angular velocity. They have been developed to drive the autonomous bicycle robot from a given initial state to a final state, so that the total running cost is minimized. To solve the problem, the following approach was used: after having computed the control system Hamiltonian, Pontryagin’s Minimum Principle was applied to derive the feasible controls and the costate system of ordinary differential equations. The feasible controls, derived as functions of the state and costate variables, were substituted into the combined nonlinear state–costate system of ordinary differential equations and yielded a control-free, state–costate system of ordinary differential equations. Such a system was judiciously vectorized to easily enable the application of any computer program written in Matlab, Octave or Scilab. A Matlab computer program, set as the main program, was developed to call a Runge–Kutta function coded into Matlab to solve the combined control-free, state–costate system of ordinary differential equations coded into a Matlab function. After running the program, the following results were obtained: seven feasible state functions from which the feasible trajectory of the robot is derived, seven feasible costate functions, and two feasible control functions. Computational simulations were developed and provided in order to persuade the readers of the effectiveness and the reliability of the approach.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference21 articles.

1. Crashes Cost SA Billions a Year: Here’s Where the Money Goes. 2022.

2. Self Stability Strategy in Tracking Control of Unmanned electric bicycle with mass balance;Lee;IEEE/RSJ Int. Conf. Intell. Robot. Syst.,2002

3. Mathematical Modeling of the Bicycle Robot with the Reaction Wheel;Owczarkowski;Ind. Res. Inst. Autom. Meas.,2015

4. Dynamical model of a new type of self-balancing tractor-trailer-bicycle;Zhuang;MATEC Web Conf.,2020

5. Non-smooth dynamic modeling and simulation of an unmanned bicycle on a curved pavement;Zhang;Appl. Math. Mech.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3