The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost

Author:

Jean-Quartier Claire12ORCID,Bein Katharina3,Hejny Lukas3,Hofer Edith3ORCID,Holzinger Andreas134ORCID,Jeanquartier Fleur1ORCID

Affiliation:

1. Human-Centered AI Lab, Medical University Graz, 8036 Graz, Austria

2. Research Data Management, Graz University of Technology, 8010 Graz, Austria

3. Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria

4. Human-Centered AI Lab, Institute of Forest Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria

Abstract

In response to socioeconomic development, the number of machine learning applications has increased, along with the calls for algorithmic transparency and further sustainability in terms of energy efficient technologies. Modern computer algorithms that process large amounts of information, particularly artificial intelligence methods and their workhorse machine learning, can be used to promote and support sustainability; however, they consume a lot of energy themselves. This work focuses and interconnects two key aspects of artificial intelligence regarding the transparency and sustainability of model development. We identify frameworks for measuring carbon emissions from Python algorithms and evaluate energy consumption during model development. Additionally, we test the impact of explainability on algorithmic energy consumption during model optimization, particularly for applications in health and, to expand the scope and achieve a widespread use, civil engineering and computer vision. Specifically, we present three different models of classification, regression and object-based detection for the scenarios of cancer classification, building energy, and image detection, each integrated with explainable artificial intelligence (XAI) or feature reduction. This work can serve as a guide for selecting a tool to measure and scrutinize algorithmic energy consumption and raise awareness of emission-based model optimization by highlighting the sustainability of XAI.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3