Analytical Solution and Numerical Simulation of Heat Transfer in Cylindrical- and Spherical-Shaped Bodies

Author:

Jalghaf Humam Kareem12ORCID,Kovács Endre1ORCID,Barna Imre Ferenc3ORCID,Mátyás László4

Affiliation:

1. Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary

2. Department of Mechanical Engineering, University of Technology-Iraq, Baghdad 19006, Iraq

3. Wigner Research Center for Physics, 1051 Budapest, Hungary

4. Department of Bioengineering, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania

Abstract

New analytical solutions of the heat conduction equation obtained by utilizing a self-similar Ansatz are presented in cylindrical and spherical coordinates. Then, these solutions are reproduced with high accuracy using recent explicit and unconditionally stable finite difference methods. After this, real experimental data from the literature regarding a heated cylinder are reproduced using the explicit numerical methods as well as using Finite Element Methods (FEM) ANSYS workbench. Convection and nonlinear radiation are also considered on the boundary of the cylinder. The verification results showed that the numerical methods have a high accuracy to deal with cylindrical and spherical bodies; also, the comparison of the temperatures for all approaches showed that the explicit methods are more accurate than the commercial software.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3