Incorporating Time-Series Forecasting Techniques to Predict Logistics Companies’ Staffing Needs and Order Volume

Author:

Alqatawna Ahmad1ORCID,Abu-Salih Bilal1ORCID,Obeid Nadim1ORCID,Almiani Muder2

Affiliation:

1. King Abdullah II School of Information Technology, The University of Jordan, Amman 11942, Jordan

2. Management Information Systems Department, Gulf University for Science and Technology, Kuwait City 32093, Kuwait

Abstract

Time-series analysis is a widely used method for studying past data to make future predictions. This paper focuses on utilizing time-series analysis techniques to forecast the resource needs of logistics delivery companies, enabling them to meet their objectives and ensure sustained growth. The study aims to build a model that optimizes the prediction of order volume during specific time periods and determines the staffing requirements for the company. The prediction of order volume in logistics companies involves analyzing trend and seasonality components in the data. Autoregressive (AR), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) are well-established and effective in capturing these patterns, providing interpretable results. Deep-learning algorithms require more data for training, which may be limited in certain logistics scenarios. In such cases, traditional models like SARIMAX, ARIMA, and AR can still deliver reliable predictions with fewer data points. Deep-learning models like LSTM can capture complex patterns but lack interpretability, which is crucial in the logistics industry. Balancing performance and practicality, our study combined SARIMAX, ARIMA, AR, and Long Short-Term Memory (LSTM) models to provide a comprehensive analysis and insights into predicting order volume in logistics companies. A real dataset from an international shipping company, consisting of the number of orders during specific time periods, was used to generate a comprehensive time-series dataset. Additionally, new features such as holidays, off days, and sales seasons were incorporated into the dataset to assess their impact on order forecasting and workforce demands. The paper compares the performance of the four different time-series analysis methods in predicting order trends for three countries: United Arab Emirates (UAE), Kingdom of Saudi Arabia (KSA), and Kuwait (KWT), as well as across all countries. By analyzing the data and applying the SARIMAX, ARIMA, LSTM, and AR models to predict future order volume and trends, it was found that the SARIMAX model outperformed the other methods. The SARIMAX model demonstrated superior accuracy in predicting order volumes and trends in the UAE (MAPE: 0.097, RMSE: 0.134), KSA (MAPE: 0.158, RMSE: 0.199), and KWT (MAPE: 0.137, RMSE: 0.215).

Funder

Gulf University for Science and Technology

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in Deep Learning Techniques for Time Series Forecasting in Maritime Applications: A Comprehensive Review;Information;2024-08-21

2. Rice Yield Forecasting Using Hybrid Quantum Deep Learning Model;Computers;2024-08-07

3. Machine Learning for Climate Change Impact Assessment and Adaptation Planning;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

4. Comparative Analysis of Time Series Forecasting Methods in Workforce Planning using Predictive Analytics;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

5. Advancing Logistics Management: E3L-Net for Predictive Demand Analytics;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3