Abstract
We investigate robust fault-tolerant control pertaining to Takagi–Sugeno (TS) fuzzy nonlinear systems with bounded disturbances, actuator failures, and time delays. A new fault model based on a sampled-data scheme that is able to satisfy certain criteria in relation to actuator fault matrix is introduced. Specifically, we formulate a reliable controller with state feedback, such that the resulting closed-loop-fuzzy system is robust, asymptotically stable, and able to satisfy a prescribed H∞ performance constraint. Linear matrix inequality (LMI) together with a proper construction of the Lyapunov–Krasovskii functional is leveraged to derive delay-dependent sufficient conditions with respect to the existence of robust H∞ controller. It is straightforward to obtain the solution by using the MATLAB LMI toolbox. We demonstrate the effectiveness of the control law and less conservativeness of the results through two numerical simulations.
Funder
Rajamangala University of Technology Suvarnabhumi
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献