Abstract
This paper presents the mathematical modeling and experimental implementation of a Buck converter with hysteresis control. The system is described using a state-space model. Theoretical and simulation studies show that the zero hysteresis control leads to an equilibrium point with the implication of an infinite commutation frequency, while the use of a constant hysteresis band induces a limit cycle with a finite switching frequency. There exists a tradeoff between voltage output ripple and transistor switching frequency. An experimental prototype for the Buck power converter is built, and theoretical results are verified experimentally. In general terms, the Buck converter with the hysteresis control shows a robust control with respect to load variations, with undesired high switching frequency taking place for a very narrow hysteresis band, which is solved by tuning the hysteresis band properly.
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献