A Language for Modeling and Optimizing Experimental Biological Protocols

Author:

Cardelli LucaORCID,Kwiatkowska Marta,Laurenti Luca

Abstract

Automation is becoming ubiquitous in all laboratory activities, moving towards precisely defined and codified laboratory protocols. However, the integration between laboratory protocols and mathematical models is still lacking. Models describe physical processes, while protocols define the steps carried out during an experiment: neither cover the domain of the other, although they both attempt to characterize the same phenomena. We should ideally start from an integrated description of both the model and the steps carried out to test it, to concurrently analyze uncertainties in model parameters, equipment tolerances, and data collection. To this end, we present a language to model and optimize experimental biochemical protocols that facilitates such an integrated description, and that can be combined with experimental data. We provide probabilistic semantics for our language in terms of Gaussian processes (GPs) based on the linear noise approximation (LNA) that formally characterizes the uncertainties in the data collection, the underlying model, and the protocol operations. In a set of case studies, we illustrate how the resulting framework allows for automated analysis and optimization of experimental protocols, including Gibson assembly protocols.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Reference25 articles.

1. Synthesizing and tuning stochastic chemical reaction networks with specified behaviours

2. BioCoder: A programming language for standardizing and automating biology protocols

3. Syntax-guided optimal synthesis for chemical reaction networks;Cardelli,2017

4. Tuning Response Curves for Synthetic Biology

5. Experimental biological protocols with formal semantics;Abate,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3