Accelerating Conjugate Heat Transfer Simulations in Squared Heated Cavities through Graphics Processing Unit (GPU) Computing

Author:

da Silva Reis César Augusto Borges1ORCID,Botezelli Daniel1,de Azevedo Arthur Mendonça1ORCID,dos Santos Magalhães Elisan1ORCID,da Silveira Neto Aristeu2

Affiliation:

1. Applied Thermal Engineering Laboratory, Energy Department, Aeronautics Institute of Technology—ITA, São José dos Campos 12228-900, Brazil

2. School of Mechanical Engineering, Federal University of Uberlândia—UFU, Uberlandia 38400-902, Brazil

Abstract

This research develops an innovative framework for accelerating Conjugate Heat Transfer (CHT) simulations within squared heated cavities through the application of Graphics Processing Units (GPUs). Although leveraging GPUs for computational speed improvements is well recognized, this study distinguishes itself by formulating a tailored optimization strategy utilizing the CUDA-C programming language. This approach is specifically designed to tackle the inherent challenges of modeling squared cavity configurations in thermal simulations. Comparative performance evaluations reveal that our GPU-accelerated framework reduces computation times by up to 99.7% relative to traditional mono-core CPU processing. More importantly, it demonstrates an increase in accuracy in heat transfer predictions compared to existing CPU-based models. These results highlight not only the technical feasibility but also the substantial enhancements in simulation efficiency and accuracy, which are crucial for critical engineering applications such as aerospace component design, electronic device cooling, and energy system optimization. By advancing GPU computational techniques, this work contributes significantly to the field of thermal management, offering a potential for broader application and paving the way for more efficient, sustainable engineering solutions.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Petróleo Brasileiro S.A.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3