Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model

Author:

Bouchnita Anass1,Volpert Vitaly23

Affiliation:

1. Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA

2. Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France

3. S.M. Nikolsky Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia

Abstract

In injured arteries, platelets adhere to the subendothelium and initiate the coagulation process. They recruit other platelets and form a plug that stops blood leakage. The formation of the platelet plug depends on platelet activation, a process that is regulated by intracellular calcium signaling. Using an improved version of a previous multiscale model, we study the effects of changes in calcium signaling on thrombus growth. This model utilizes the immersed boundary method to capture the interplay between platelets and the flow. Each platelet can attach to other platelets, become activated, express proteins on its surface, detach, and/or become non-adhesive. Platelet activation is captured through a specific calcium signaling model that is solved at the intracellular level, which considers calcium activation by agonists and contacts. Simulations reveal a contact-dependent activation threshold necessary for the formation of the thrombus core. Next, we evaluate the effect of knocking out the P2Y and PAR receptor families. Further, we show that blocking P2Y receptors reduces platelet numbers in the shell while slightly increasing the core size. An analysis of the contribution of P2Y and PAR activation to intraplatelet calcium signaling reveals that each of the ADP and thrombin agonists promotes the activation of platelets in different regions of the thrombus. Finally, the model predicts that the heterogeneity in platelet size reduces the overall number of platelets recruited by the thrombus. The presented framework can be readily used to study the effect of antiplatelet therapy under different physiological and pathological blood flow, platelet count, and activation conditions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3