EEG-Based Classification of Spoken Words Using Machine Learning Approaches

Author:

Alonso-Vázquez Denise1ORCID,Mendoza-Montoya Omar1ORCID,Caraza Ricardo2,Martinez Hector R.2,Antelis Javier M.1ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico

2. Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects the nerve cells in the brain and spinal cord. This condition leads to the loss of motor skills and, in many cases, the inability to speak. Decoding spoken words from electroencephalography (EEG) signals emerges as an essential tool to enhance the quality of life for these patients. This study compares two classification techniques: (1) the extraction of spectral power features across various frequency bands combined with support vector machines (PSD + SVM) and (2) EEGNet, a convolutional neural network specifically designed for EEG-based brain–computer interfaces. An EEG dataset was acquired from 32 electrodes in 28 healthy participants pronouncing five words in Spanish. Average accuracy rates of 91.04 ± 5.82% for Attention vs. Pronunciation, 73.91 ± 10.04% for Short words vs. Long words, 81.23 ± 10.47% for Word vs. Word, and 54.87 ± 14.51% in the multiclass scenario (All words) were achieved. EEGNet outperformed the PSD + SVM method in three of the four classification scenarios. These findings demonstrate the potential of EEGNet for decoding words from EEG signals, laying the groundwork for future research in ALS patients using non-invasive methods.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference49 articles.

1. Cuetos, F. (2012). Neurociencia del Lenguaje: Bases Neurológicas e Implicaciones Clínicas, Editorial Médica Panamericana. [1st ed.].

2. Ladefoged, P., and Johnson, K. (2014). A Course in Phonetics, Cengage Learning. [7th ed.].

3. Assessment of dysarthria and dysphagia in patients with amyotrophic lateral sclerosis: Review of the current evidence;Lee;Muscle Nerve,2021

4. Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life;Caligari;Amyotroph. Lateral Scler. Front. Degener.,2013

5. Brain–computer interfaces;Wolpaw;Handb. Clin. Neurol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3