Syrga2: Post-Quantum Hash-Based Signature Scheme

Author:

Algazy Kunbolat1ORCID,Sakan Kairat1ORCID,Nyssanbayeva Saule1,Lizunov Oleg12

Affiliation:

1. Information Security Laboratory, Institute of Information and Computational Technologies, Almaty 050010, Kazakhstan

2. Institute of Automation and Information Technologies, Satbayev University, Almaty 050013, Kazakhstan

Abstract

This paper proposes a new post-quantum signature scheme, Syrga2, based on hash functions. As known, existing post-quantum algorithms are classified based on their structures. The proposed Syrga2 scheme belongs to the class of multi-use signatures with state retention. A distinctive feature of state-retaining signatures is achieving a compromise between performance and signature size. This scheme enables the creation of a secure signature for r messages using a single pair of secret and public keys. The strength of signature algorithms based on hash functions depends on the properties of the hash function used in their structure. Additionally, for such algorithms, it is possible to specify the security level precisely. In the proposed scheme, the HBC-256 algorithm developed at the Institute of Information and Computational Technologies (IICT) is used as the hash function. The security of the HBC-256 algorithm has been thoroughly studied in other works by the authors. In contrast to the Syrga1 scheme presented in previous works by the authors, the Syrga2 scheme provides for the definition of different security levels determined by the parameter τ. This paper experimentally demonstrates the impossibility of breaking the proposed scheme using a chosen-plaintext attack. Additionally, the scheme’s performance is evaluated for signature creation, signing, and message verification.

Funder

Ministry of Science and Higher Education of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3