Designing Microfluidic PCR Chip Device Using CFD Software for the Detection of Malaria

Author:

Austria Meynard1,Garcia Jon Patrick1,Caparanga Alvin1,Tayo Lemmuel12,Doma Bonifacio12

Affiliation:

1. School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines

2. Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines

Abstract

Polymerase chain reaction (PCR) technique is one of the molecular methods in amplifying DNA for the detection of malaria. However, the collection and transportation of samples and the processing and dissemination of results via conventional PCR, especially when used for routine clinical practice, can hamper the technique’s sensitivity and specificity. The rampancy of such disease in the Philippines is aggravated by the limited supply of medical machinery and the poor economic state of the country; thus, the need to innovate a device for the early detection of malaria is necessary. With that, this study focuses on designing a microfluidic device that will mimic the function of a conventional genus-specific PCR based on the 18S rRNA gene to detect malaria parasites (Plasmodium falciparum) at low-grade parasitemia. The design was intended to be portable, accessible, and economical, which none from past literature has dealt with specifically for malaria detection. This in silico design is a first in the country specially crafted for such reasons. The proposed device was developed and simulated using ANSYS software for Computational Fluid Dynamics (CFD) analyses. The simulation shows that adding loops to the design increases its relative deviation but minimally compared to having only a straight path design. This indicates that looping is acceptable in designing a microfluidic device to minimize chip length. It was also found that increasing the cross-sectional area of the fluid path decreases the efficiency of the design. Lastly, among the three materials utilized, the chip made of polypropylene is the most efficient, with a relative deviation of 0.94 compared to polycarbonate and polydimethylsiloxane, which have relative deviations of 2.78 and 1.92, respectively. Future researchers may mesh the 44-cycle microfluidic chip due to the limitations of the software used in this study, and other materials, such as biocomposites, may be assessed to broaden the application of the design.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3