The Influence of Crystal Anisotropy on the Characteristics of Solitary Waves in the Nonlinear Supratransmission Effect: Molecular Dynamic Modeling

Author:

Zakharov Pavel V.12ORCID,Korznikova Elena A.34ORCID,Izosimov Artem A.5,Kochkin Andrey S.6

Affiliation:

1. Department of Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., St. Petersburg 195251, Russia

2. Institute for Metals Superplasticity Problems, Ufa 450001, Russia

3. The World-Class Advanced Digital Technologies Research Center, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., St. Petersburg 195251, Russia

4. Technological Machines and Equipment Department, Ufa State Petroleum Technological University, Ufa 450064, Russia

5. Department of Surgical Dentistry, Bashkir State Medical University, Ufa 450008, Russia

6. Department of Physics, Altai State University, Barnaul 656049, Russia

Abstract

This study examines the mechanism of nonlinear supratransmission (NST), which involves the transfer of disturbance to discrete media at frequencies not supported by the structure. We considered a model crystal with A3B stoichiometry. The investigation was carried out using atomistic modeling through molecular dynamics. The interatomic interaction was determined by a potential obtained through the embedded atom method, which approximates the properties of the Pt3Al crystal. The effect of NST is an important property of many discrete structures. Its existence requires the discreteness and nonlinearity of the medium, as well as the presence of a forbidden zone in its spectrum. This work focuses on the differences in the NST effect due to the anisotropy of crystallographic directions. Three planes along which the disturbance caused by NST propagated were considered: (100), (110), and (111). It was found that the intensity of the disturbance along the (100) plane is an order of magnitude lower than for more densely packed directions. Differences in the shape of solitary waves depending on the propagation direction were shown. Moreover, all waves can be described by a single equation, being a solution of the discrete variational equations of macroscopic and microscopic displacements, with different parameters, emphasizing the unified nature of the waves and the contribution of crystal anisotropy to their properties. Studying the NST phenomenon is essential due to numerous applications of the latter, such as implications in information transmission and signal processing. Understanding how disturbances propagate in discrete media could lead to advancements in communication technologies, data storage, and signal amplification where the earlier mentioned ability to describe it with analytical equations is of particular importance.

Funder

Russian Science Foundation

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3