On the Time Frequency Compactness of the Slepian Basis of Order Zero for Engineering Applications

Author:

Sun Zuwen1ORCID,Baddour Natalie1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

Time and frequency concentrations of waveforms are often of interest in engineering applications. The Slepian basis of order zero is an index-limited (finite) vector that is known to be optimally concentrated in the frequency domain. This paper proposes a method of mapping the index-limited Slepian basis to a discrete-time vector, hence obtaining a time-limited, discrete-time Slepian basis that is optimally concentrated in frequency. The main result of this note is to demonstrate that the (discrete-time) Slepian basis achieves minimum time-bandwidth compactness under certain conditions. We distinguish between the characteristic (effective) time/bandwidth of the Slepians and their defining time/bandwidth (the time and bandwidth parameters used to generate the Slepian basis). Using two different definitions of effective time and bandwidth of a signal, we show that when the defining time-bandwidth product of the Slepian basis increases, its effective time-bandwidth product tends to a minimum value. This implies that not only are the zeroth order Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but also as their defining time-bandwidth products increase, their effective time-bandwidth properties approach the known minimum compactness allowed by the uncertainty principle. Conclusions are also drawn about the smallest defining time-bandwidth parameters to reach the minimum possible compactness. These conclusions give guidance for applications where the time-bandwidth product is free to be selected and hence may be selected to achieve minimum compactness.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3