Author:
Fernandez Gonzalo,Mendina Mariana,Usera Gabriel
Abstract
The use of Computational Fluid Dynamics (CFD) to assist in air quality studies in urban environments can provide accurate results for the dispersion of pollutants. However, due to the computational resources needed, simulation domain sizes tend to be limited. This study aims to improve the computational efficiency of an emission and dispersion model implemented in a CPU-based solver by migrating it to a CPU–GPU-based one. The migration of the functions that handle boundary conditions and source terms for the pollutants is explained, as well as the main differences present in the solvers used. Once implemented, the model was used to run simulations with both engines on different platforms, enabling the comparison between them and reaching promising time improvements in favor of the use of GPUs.
Subject
Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献