Effect of Structure on the Thermal-Mechanical Performance of Fully Ceramic Microencapsulated Fuel

Author:

Zhou Yi,Xiao Zhong,Liu Shichao,Chen Ping,Pang Hua,Xin Yong,Jiao Yongjun,Gao Shixin,Zhang Kun,Li Wenjie,Yu Junchong

Abstract

The effect of non-fuel part size on the thermal-mechanical performance of fully ceramic microencapsulated (FCMTM) Fuel was investigated, and the non-fuel part size was selected according to integrity maintaining of non-fuel part and silicon carbide (SiC) layers. The non-fuel part size can affect the FCMTM temperature and stress distribution greatly by changing the distance between tristructural isotropic (TRISO) particles. The maximum temperature of SiC matrix increased from 1220 K to 1450 K with the non-fuel part size increasing from 100 μm to 500 μm, and the matrix temperature of all the samples was lower than the decomposition point of SiC ceramics. The maximum hoop stress decreased with non-fuel part size, but the inner part exhibiteda crosscurrent trend. The inner part of the SiC matrix lost structure integrity because of the large hoop stress caused by the deformation of TRISO particles, however, the non-fuel parts of FCMTM pellet may maintain their integrity when the non-fuel part size was larger than 300 μm. SiC layers hoop stress increased with non-fuel part size, and the failure probability of SiC layer was lower than 2.2 × 10−4 for the FCMTM pellet with small non-fuel part size. The integrity of non-fuel and SiC layers can be maintained for the FCMTM pellet with the non-fuel part size from 300 μm to 400 μm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3