Computational Fluid Dynamics Analysis of Varied Cross-Sectional Areas in Sleep Apnea Individuals across Diverse Situations

Author:

Faizal W. M.1ORCID,Khor C. Y.1ORCID,Shahrin Suhaimi1,Hazwan M. H. M.1,Ahmad M.1,Misbah M. N.1,Haidiezul A. H. M.1ORCID

Affiliation:

1. Faculty of Mechanical Engineering & Technology, University Malaysia Perlis, 02600 Arau, Perlis, Malaysia

Abstract

Obstructive sleep apnea (OSA) is a common medical condition that impacts a significant portion of the population. To better understand this condition, research has been conducted on inhaling and exhaling breathing airflow parameters in patients with obstructive sleep apnea. A steady-state Reynolds-averaged Navier–Stokes (RANS) approach and an SST turbulence model have been utilized to simulate the upper airway airflow. A 3D airway model has been created using advanced software such as the Materialize Interactive Medical Image Control System (MIMICS) and ANSYS. The aim of the research was to fill this gap by conducting a detailed computational fluid dynamics (CFD) analysis to investigate the influence of cross-sectional areas on airflow characteristics during inhale and exhale breathing in OSA patients. The lack of detailed understanding of how the cross-sectional area of the airways affects OSA patients and the airflow dynamics in the upper airway is the primary problem addressed by this research. The simulations revealed that the cross-sectional area of the airway has a notable impact on velocity, Reynolds number, and turbulent kinetic energy (TKE). TKE, which measures turbulence flow in different breathing scenarios among patients, could potentially be utilized to assess the severity of obstructive sleep apnea (OSA). This research found a vital correlation between maximum pharyngeal turbulent kinetic energy (TKE) and cross-sectional areas in OSA patients, with a variance of 29.47%. Reduced cross-sectional area may result in a significant TKE rise of roughly 10.28% during inspiration and 10.18% during expiration.

Funder

Ministry of Higher Education Malaysia

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3