A Modified Heart Dipole Model for the Generation of Pathological ECG Signals

Author:

Versaci MarioORCID,Angiulli GiovanniORCID,La Foresta FabioORCID

Abstract

In this paper, we introduce a new dynamic model of simulation of electrocardiograms (ECGs) affected by pathologies starting from the well-known McSharry dynamic model for the ECGs without cardiac disorders. In particular, the McSharry model has been generalized (by a linear transformation and a rotation) for simulating ECGs affected by heart diseases verifying, from one hand, the existence and uniqueness of the solution and, on the other hand, if it admits instabilities. The results, obtained numerically by a procedure based on a Four Stage Lobatto IIIa formula, show the good performances of the proposed model in producing ECGs with or without heart diseases very similar to those achieved directly on the patients. Moreover, verified that the ECGs signals are affected by uncertainty and/or imprecision through the computation of the linear index and the fuzzy entropy index (whose values obtained are close to unity), these similarities among ECGs signals (with or without heart diseases) have been quantified by a well-established fuzzy approach based on fuzzy similarity computations highlighting that the proposed model to simulate ECGs affected by pathologies can be considered as a solid starting point for the development of synthetic pathological ECGs signals.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Reference44 articles.

1. The ECG Made Easy;Hampton,2019

2. On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis;Gargiulo;Sensors,2018

3. Deep-ECG: Convolutional Neural Newtorks for ECG biometric Recognition;Labatin;Pattern Recognit. Lett.,2019

4. Cardiovascular Diseases in the Mirror of Science;Biglu;J. Cardiovasc. Thorac. Res.,2016

5. PCA and ICA for the extraction of EEG dominant components in cerebral death assessment;La Foresta;Proc. Int. Jt. Conf. Neural Netw.,2005

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3