Adsorption of SO2 Molecule on Pristine, N, Ga-Doped and -Ga-N- co-Doped Graphene: A DFT Study

Author:

Akhmetsadyk Dinara1ORCID,Ilyin Arkady1,Guseinov Nazim1,Beall Gary2

Affiliation:

1. Department of Physics and Technology, Al-Farabi Kazakh National University, Almaty 050000, Kazakhstan

2. Materials Science, Engineering, and Commercialization, Texas State University, San Marcos, TX 78666, USA

Abstract

SO2 (sulfur dioxide) is a toxic substance emitted into the environment due to burning sulfur-containing fossil fuels in cars, factories, power plants, and homes. This issue is of grave concern because of its negative effects on the environment and human health. Therefore, the search for a material capable of interacting to detect SO2 and the research on developing effective materials for gas detection holds significant importance in the realm of environmental and health applications. It is well known that one of the effective methods for predicting the structure and electronic properties of systems capable of interacting with a molecule is a method based on quantum mechanical approaches. In this work, the DFT (Density Functional Theory) program DMol3 in Materials Studio was used to study the interactions between the SO2 molecule and four systems. The adsorption energy, bond lengths, bond angle, charge transfer, and density of states of SO2 molecule on pristine graphene, N-doped graphene, Ga-doped graphene, and -Ga-N- co-doped graphene were investigated using DFT calculations. The obtained data indicate that the bonding between the SO2 molecule and pristine graphene is relatively weak, with a binding energy of −0.32 eV and a bond length of 3.06 Å, indicating physical adsorption. Next, the adsorption of the molecule on an N-doped graphene system was considered. The adsorption of SO2 molecules on N-doped graphene is negligible; generally, the interaction of SO2 molecules with this system does not significantly change the electronic properties. However, the adsorption energy of the gas molecule on Ga-doped graphene relative to pristine graphene increased significantly. The evidence of chemisorption is increased adsorption energy and decreased adsorption distance between SO2 and Ga-doped graphene. In addition, our results show that introducing -Ga-N- co-dopants of an “ortho” configuration into pristine graphene significantly affects the adsorption between the gas molecule and graphene. Thus, this approach is significantly practical in the adsorption of SO2 molecules.

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3