Affiliation:
1. Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia
2. Dinus Research Group for AI in Medical Science (DREAMS), Universitas Dian Nuswantoro, Semarang 50131, Indonesia
3. Department of Health Information Management, Universitas Indonesia Maju, Jakarta 12610, Indonesia
Abstract
This research paper presents a deep-learning approach to early detection of skin cancer using image augmentation techniques. We introduce a two-stage image augmentation process utilizing geometric augmentation and a generative adversarial network (GAN) to differentiate skin cancer categories. The public HAM10000 dataset was used to test how well the proposed model worked. Various pre-trained convolutional neural network (CNN) models, including Xception, Inceptionv3, Resnet152v2, EfficientnetB7, InceptionresnetV2, and VGG19, were employed. Our approach demonstrates an accuracy of 96.90%, precision of 97.07%, recall of 96.87%, and F1-score of 96.97%, surpassing the performance of other state-of-the-art methods. The paper also discusses the use of Shapley Additive Explanations (SHAP), an interpretable technique for skin cancer diagnosis, which can help clinicians understand the reasoning behind the diagnosis and improve trust in the system. Overall, the proposed method presents a promising approach to automated skin cancer detection that could improve patient outcomes and reduce healthcare costs.
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献