Design and Implementation of a Camera-Based Tracking System for MAV Using Deep Learning Algorithms

Author:

Hensel Stefan1ORCID,Marinov Marin B.2ORCID,Panter Raphael1

Affiliation:

1. Department for Electrical Engineering, University of Applied Sciences Offenburg, 77652 Offenburg, Germany

2. Department of Electronics, Technical University of Sofia, 1756 Sofia, Bulgaria

Abstract

In recent years, the advancement of micro-aerial vehicles has been rapid, leading to their widespread utilization across various domains due to their adaptability and efficiency. This research paper focuses on the development of a camera-based tracking system specifically designed for low-cost drones. The primary objective of this study is to build up a system capable of detecting objects and locating them on a map in real time. Detection and positioning are achieved solely through the utilization of the drone’s camera and sensors. To accomplish this goal, several deep learning algorithms are assessed and adopted because of their suitability with the system. Object detection is based upon a single-shot detector architecture chosen for maximum computation speed, and the tracking is based upon the combination of deep neural-network-based features combined with an efficient sorting strategy. Subsequently, the developed system is evaluated using diverse metrics to determine its performance for detection and tracking. To further validate the approach, the system is employed in the real world to show its possible deployment. For this, two distinct scenarios were chosen to adjust the algorithms and system setup: a search and rescue scenario with user interaction and precise geolocalization of missing objects, and a livestock control scenario, showing the capability of surveying individual members and keeping track of number and area. The results demonstrate that the system is capable of operating in real time, and the evaluation verifies that the implemented system enables precise and reliable determination of detected object positions. The ablation studies prove that object identification through small variations in phenotypes is feasible with our approach.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3